

www.vishay.com

Vishay Semiconductors

High Brightness LED Power Module

DESCRIPTION

VLPC0303A1, VLPN0303A1 and VLPW0303A1 are metal core based high brightness LED power modules assembled with 9 HB white LEDs. VLPC0303A1 is a cool white version in a color temperature range of 5000 K to 7000 K. VLPN0303A1 is natural white with a color temperature of 3800 K to 5000 K and VLPW0303A1 is warm white in a color temperature range 2850 K to 3500 K. Additional to the modules a suitable LED driver is available

PRODUCT GROUP AND PACKAGE DATA

Product group: LED
Package: LED module
Product series: power
Angle of half intensity: ± 60°

FEATURES

- Metal core PCB: Al > 1 thickness
- Single side/single layer PCB
- · Shiny white surface
- 9 LEDs minimum 87 Im for cool white, 76 Im for natural white and 67 Im for warm white at 350 mA each

- Conductive top layer: Cu (min. 18 μm)
- Isolation layer prepreg (100 μm)
- ESD withstand voltage: up to 2 kV according to JESD22-A114-B
- Color binning
- Compliant to RoHS Directive 2002/95/EC

Note

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- · Automotive internal lighting
- Internal lighting in buildings
- Tunnel lights
- · Reading lamp, table lamp
- · General lighting application

PARTS TABLE							
PART	COLOR	LUMINOUS FLUX (at $I_F = 350$ mA typ.)	COLOR TEMPERATURE K	TECHNOLOGY			
VLPC0303A1	Cool white	Φ_{V} = 810 lm	5000 to 7000	InGaN			
VLPN0303A1	Natural white	$\Phi_{V} = 720 \text{ Im}$	3800 to 5000	InGaN			
VLPW0303A1	Warm white	Φ_{V} = 660 lm	2850 to 3500	InGaN			

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLPC0303A1, VLPN0303A1, VLPW0303A1						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Forward current	Per row	l _F	350	mA		
Power dissipation	Total	P _{tot}	12.6	W		
Junction temperature		Tj	120	°C		
Operating temperature range		T _{amb}	- 40 to + 85	°C		
Storage temperature range		T _{stg}	- 40 to + 85	°C		
Decomposition temperature of PCB (for cable assembly)	3 x 10 s	T _D	350	°C		

VLPC0303A1, VLPN0303A1, VLPW0303A1

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}C$, unless otherwise specified) VLPC0303A1, COOL WHITE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous flux per row (1)	I _F = 350 mA	Фу	240	270	-	lm
Luminous flux total (1)	$I_{board} = 3 \times 350 \text{ mA}$	Φ_{V}	720	810	-	lm
Color temperature	I _F = 350 mA	TK	5000	-	7000	K
Forward voltage per row	$I_F = 350 \text{ mA}$	V _F	9	10	12	V
(V _{Fmax.} - V _{Fmin.}) all rows ⁽²⁾	I _F = 350 mA	ΔV_{F}	0	-	0.6	V
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 10	-	mV/K
Temperature coefficient of Φ_V	$I_F = 350 \text{ mA}$	ТСФ∨	-	- 0.4	-	%/K

Notes

- Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ± 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of ± 11 %.
- (1) Calculated based on single LED unit.
- (2) V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}$ C, unless otherwise specified) VLPN0303A1, NATURAL WHITE							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous flux per row (1)	I _F = 350 mA	Φ_{V}	200	240	-	lm	
Luminous flux total (1)	$I_{board} = 3 \times 350 \text{ mA}$	Фγ	600	720	-	lm	
Color temperature	I _F = 350 mA	TK	3800	-	5000	K	
Forward voltage per row	I _F = 350 mA	V _F	9	10	12	V	
(V _{Fmax.} - V _{Fmin.}) all rows (2)	I _F = 350 mA	ΔV_{F}	0	-	0.6	V	
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 10	-	mV/K	
Temperature coefficient of Φ_V	I _F = 350 mA	ТСФ∨	-	- 0.4	-	%/K	

Notes

- Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ± 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of ± 11 %.
- (1) Calculated based on single LED unit.
- (2) V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}C$, unless otherwise specified) VLPW0303A1, WARM WHITE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous flux per row (1)	I _F = 350 mA	Φ_{V}	180	220	-	lm
Luminous flux total (1)	$I_{board} = 3 \times 350 \text{ mA}$	Фу	540	660	-	lm
Color temperature	I _F = 350 mA	TK	2850	-	3500	K
Forward voltage per row	I _F = 350 mA	V _F	9	10	12	V
(V _{Fmax.} - V _{Fmin.}) all rows (2)	I _F = 350 mA	ΔV_{F}	0	-	0.6	V
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 10	-	mV/K
Temperature coefficient of Φ _V	I _F = 350 mA	ТСФ∨	-	- 0.4	-	%/K

Notes

- Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ± 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of ± 11 %.
- (1) Calculated based on single LED unit.
- (2) V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

Vishay Semiconductors

COLOR RANGE AND COLOR BINNING

VLPC3030A1: 5000 K to 7000 K group X to V

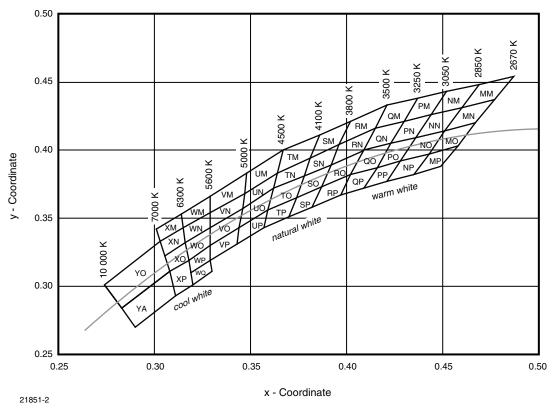
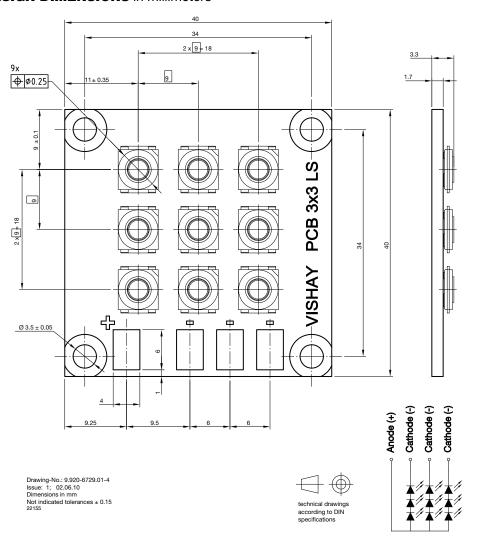



Fig. 1 - Chromaticity Coordinates of Colorgroups

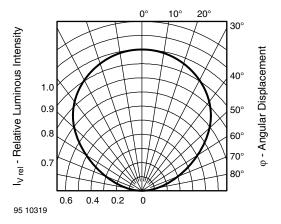
Vishay Semiconductors

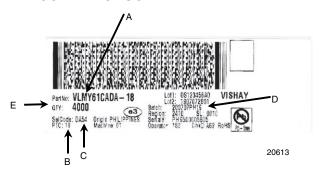
PCB BASIC DESIGN DIMENSIONS in millimeters

PCB CHARACTERISTICS

- Metal core PCB: Al (minimum 1000 µm thickness)
- Prepreg minimum 63 µm
- Conductive pattern Cu minimum 18 µm
- Free of burrs
- Compliant to RoHS directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition
- Solder resist on top side
- Shiny white surface (glossy-white Taiyo-PSR 2000)
- Galvanic of solder pads and backside pure matte Sn (0.8 μm to 1.2 μm)
- Assembled with 9 high brightness power LEDs. LED position accuracy ± 0.3

EMISSION CHARACTERISTIC




Fig. 2 - Rel. Luminous Intensity vs. Angular Displacement

VISHAY_® www.vishay.com

VLPC0303A1, VLPN0303A1, VLPW0303A1

Vishay Semiconductors

BAR CODE PRODUCT LABEL

- A. Type of component
- B. Manufacturing plant
- C. SEL selection code (bin): X = color group
- D. Batch:

200707 = year 2007, week 07

PH19 = plant code

E. Total quantity

Note

• 48 PCB's per box, minimum order quantity 48

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000